

PLAN

ENE!

- ELF (remote)
 - Principle: laser induced fluorescence (LIF)
 - Application: oceans
- CLASS (local)
 - Principle: laser scanning flow cytometry
 - Application: natural waters (from wells to oceans)
 - **CASPER** (local)
 - Principle: LIF with double filtration and double excitation (patent pending)
 - Application: natural waters (from wells to oceans)

ELF: oceanographic campaigns ENEL

- 5 in Antarctica, 2 in the Italy-New Zealand transect
 - ELF is on board the Research Vessel Italica

ELF: data

- ENEL
- Raman scattering by water (1) → transparency
- Fluorescence of CDOM, phycoerytrin, chl-a (2) → concentration of phytoplankton-related substances
- Fluorescence of chl-a before & after a pump (3) → in vivo phytoplankton fluorescence yield
- PAR (4) → electron transport rate

ELF: thematic maps

ENEL

Many calibrated and georeferenced measurements

Chl-a [mg m⁻³] 168 172 176 < 0.05 0.1 -72 ltalian 0.2 0.3 -74 0.5 **Ross Sea** -76 December 1997 - January 1998

> 5

ELF: advantages

- Vs satellite radiometer
 - Insensitive to cloud covers or ice debris
 - Accurate in turbid waters
 - Free from atmospheric corrections
 - Operational H24
- Vs in situ sampler
 - Closer to the satellite coverage and resolution

ELF is a "connecting ring" merging the accuracy of in situ samplers and the coverage of ocean color satellite radiometers

ELF: comparing with radiometers

- MODIS-Terra and ELF
 - 18th Italian Campaign (01/05 03/04, 2003)
 - Daily L3 products (~ 4 km × 4 km)
 - Averaging of ELF data in a pixel (~ 4 km × 0.1 m)

ELF: comparing with radiometers

MODIS-Terra and ELF

- 258 pixels are crossed by ELF 1270 times in 14 days
- 14 "simultaneous"measurements
- Weight = SQRT (# of pixels × # of crossings)
- Slope without and with weights:0.67 and 0.93

ELF: calibrating chl-a algorithm ENEL

SeaWiFS and ELF

- 16th Italian Campaign (01/05 - 02/26, 2001)
- 8-day L3 products $(\sim 9 \text{ km} \times 9 \text{ km}, 8)$ days)
- Averaging of ELF data in a pixel $(\sim 9 \text{ km} \times 0.1 \text{ m})$

LOG₁₀(chl-a) LOG₁₀(R₄₉₀/R₅₅₅)

ELF: calibrating chl-a algorithm ENEL SeaWiFS and ELF Concurrent measurements: 1523 - Standard algorithm weakly overestimates high **ELF-calibrated** chl-a, strongly underestimates low chl-a Tomsk, July 1st 2006 Local and remote laser sensing in natural waters

ELF: calibrating PP algorithm

- Ross Sea calibration
 - BF (Behrenfeld and Falkowski 1997), S (Smith et al 2000)
 - New PP estimates are similar in algal blooms, higher in oligotrophic waters

standard chl-a & BF

ENED.

ELF-calibrated chl-a & S

difference

ELF: calibrating CDOM algorithm

- SeaWiFS and ELF
 - 18th Italian Campaign, 8-day L3 products, averaging of ELF data in a pixel
 - Concurrent measurements: 854
 - Correlation between chl-a and a_{CDOM} (440) (season)

ELF: conclusions ENER Accuracy of in situ samplers and coverage of satellite radiometers have been merged by shipborne lidar. Present estimates of chl-a and PP should be reviewed in the Antarctic coastal environment. SeaWiFS-based CDOM retrieval is feasible. Local and remote laser sensing in natural waters 14 Tomsk, July 1st 2006

CLASS: a Siberian story!

ENEL

- Laser scanning flow cytometry (LSFC)
 - Introduced in Novosibirsk by Maltsev et al
 - Laser (1), from the top, and sample (2), from the bottom, are collinear
 - Detection time of the scattered light (3), collected by the mirror (4), and scattering angle are related

Tomsk, Ju

16

CLASS: system

- ENEL
- CLASS
 - Optical scheme

CLASS: system

- CLASS
 - Cuvette

- ENEL
- First indicatrix
 - July 14th, 2005: 2 μm spherical latex particles

ENEL

- 2 µm spherical latex particles
 - Size (3) and refractive index (4) are computed by theoretical fits (2) on the measured indicatrices (1)

- Penicillium Italicum
 - Size (3) and refractive index (4) are computed by theoretical fits (2) on the measured indicatrices (1)

ENEL

- Marine Synechocystis
 - Size (3) and refractive index (4) are computed by theoretical fits (2) on the measured indicatrices (1)

- All particles
 - The Synechocystis sample was old

- ENEL
- Phase 1: scattering
 - Size and refractive index: done

- Phase 2: fluorescence
 - Pigments: preliminary results

- ENE!
- Phase 3: polarization
 - Shape: preliminary results

- ENEL
- Phase 4: multiple excitation (pump and probe)
 - Fluorescence yield: lasers under construction

CLASS: conclusions

- CLASS, a new laser scanning flow cytometer,
 operates at the ENEA Research Center in Frascati
- Laser scanning flow cytometry has been applied for the first time to marine particles (August 2nd, 2005)
- Fluorescence and polarization channels have been implemented
- In the near future multiple excitation will be added, thus enlarging the characterizing capabilities of marine particles by CLASS

CASPER: principle

ENEL

- Laser induced fluorescence (LIE)
 - Emission spectrum of Synecochoccus leopoliensis excited at 355 nm

Tomsk, Ju

32

CASPER: principle

- ENEL
- Double filtration (30 and 0.2 um)
 - Discrimination of particulate and dissolved matter
- Double excitation (266 and 405 nm)
 - Detection of oils, PAH and proteins (266) and CDOM, chl-a and other algal pigments (405)

Tomsk, July 1s

ers

CASPER: software

- Remote control
 - Battery, lasers, shutters, pumps and valves are controlled from the laptop (left)
- Data acquisition
 - Spectra are acquired from the laptop (right)

CASPER: Sicily Campaign 2005 ENEL Licata and Siracusa, May 22 – 27, 2005 - 81 samplings: GPS, conductivity, temperature, pH, chlorophyll-a and CDOM (CASPER) Salso Tomsk, July

CASPER: Sicily Campaign 2005

CDOM and conductivity (salinity)

Tomsk, July 1st 2006

Loca

CASPER: conclusions

ENEN.

- CASPER, an innovative laser spectrofluorometer, has been developed at the ENEA Research Center in Frascati (patent pending)
- CASPER operated during a field campaign in Sicily (May 22 – 27, 2005)
- CASPER data will improve our understanding of salinization and desertification

Acknowledgements

ENEL

- The authors are deeply grateful to R. Barbini,
 F. Colao and R. Fantoni for their involvement
- The contribution of P. Aristipini, E.S. Artamonov,
 - L. De Dominicis, D. Del Bugaro, A. De Nicolais,
 - D. Ferrante, M. Galli, R. Giovagnoli, I. Menicucci and
 - D. Rapti-Caputo is kindly acknowledged
- A special thank is addressed to the best "sotware developer" we know: I.G. Okladnikov
- This work has been supported by CNR, ENEA, NASA, NATO and PNRA

